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Abstract—In this paper we study the issue of characterizing
the complexity of air traffic to support Air Traffic Management
(ATM) operations. We discuss, in particular, the relevant features
of a complexity metric in advanced automated ATM systems
where part of the responsibility for separation maintenance is
delegated to the aircrews, and trajectory management functions
are further automated and distributed.
A probabilistic complexity metric is described and analyzed
in some detail. Possible applications to conflict detection and
resolution and trajectory management operations are presented
through numerical examples.

I. INTRODUCTION

The growth in air traffic demand is pushing the limits
of the current ground-based ATM system. For example, in
2007, there was a 5.3% growth in the air traffic over Europe
over 2006, with a disproportionate increase of 17.4 % in the
delay [1]. The traffic grew by 0.5% in 2008 compared to
2007 while the total delay increased by 10.4% over 2007 [2].
There is a need for the current capacity to be increased while
ensuring that the safety requirements still hold. The currently
adopted strategy consists in redistributing and reassigning
human resources and reconfiguring sectors so as to maintain
the air traffic controllers workload under sustainable levels. On
a longer term perspective, the whole Air Traffic Management
(ATM) system must be rethought and its degree of automation
increased in order to adapt the capacity of the ATM system
to the grown air traffic demand. This has fostered the devel-
opment of new operational concepts in ATM, as witnessed by
the SESAR (Single European Sky ATM Research, [3]) and
NextGen (Next Generation Air Transportation System, [4])
projects.

In advanced automated airborne ATM, aircraft entering the
self-separation airspace can modify their flight plan so as to
optimize performance, while satisfying some constraint on
their exit condition when synthesizing their new trajectory.
This flexibility with respect to the ATC-managed airspace
offers each single aircraft the possibility to improve the effec-
tiveness of its flight. In turn, pilots will have to take over the
ATC tasks for separation assurance, possibly relying on tools
enabled by advanced technologies for sensing, communicating,
and decision making. ASAS (Airborne Separation Assistance
System) has by now become a keyword in aeronautics.

Air traffic complexity is a concept introduced to measure
the difficulty and effort required to safely and efficiently

managing air traffic. In the current ATM system, complexity is
ultimately related to the difficulty perceived by the air traffic
controllers in handling safely a certain air traffic situation
(ATC workload). The idea is that assessing the impact on
the ATC workload of different air traffic configurations can
help to evaluate how the current ground-based ATM system
is operated, and can also provide guidelines on how to obtain
more manageable sectors by reconfiguring the airspace and by
modifying traffic patterns, [5], [6], [7], [8]. The work [9] was
perhaps the first one to systematically examine the relationship
between air traffic characteristics and controller workload.

Most studies on air traffic complexity have been developed
with reference to ground-based ATM, as it clearly appears
from the literature reviews [10] and [11]. Among the proposed
complexity measures, it is worth mentioning the dynamic den-
sity introduced in the pioneering work by NASA, [12], [13].
Dynamic density is a single aggregate indicator where traffic
density and other controller workload contributors (such as the
number of aircraft undergoing trajectory change and requiring
close monitoring due to reduced separation) are combined
linearly or through a neural network whose weights are tuned
based on interviews to qualified air traffic controllers. The
difficulty in obtaining reliable workload measures has been
one of the strongest motivations for investigating complexity
metrics independent of the ATC workload, such as the input-
output approach in [14], [15], the fractal dimension in [16],
and the intrinsic complexity measures in [17], [18], [19]
and [20]. These metrics are actually those that appear more
portable to advanced automated ATM.

Performance and safety of each aircraft flight is affected by
the traffic present in the self-separation airspace:

• performance is deteriorated when the aircraft passes
through an area with highly congested traffic, since many
tactical maneuvers are required

• safety is compromised when the aircraft is involved in a
multiaircraft conflict that exceeds the capabilities of the
onboard conflict resolution system

Critical situations with respect to performance and safety can
be timely predicted by introducing the appropriate notion of
air traffic complexity, which would then play a key role in the
strategic and hazards prevention phases of the ATM process.
More specifically, complexity measures could be useful to
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predict situations that may overburden the distributed Conflict
Detection and Resolution (CD&R) function, and could also
benefit the strategic trajectory management operations by
detecting critical areas that would require excessive tactical
manoeuvring of the aircraft.

Workload-independent metrics can be classified as control-
dependent or control-independent. In control-dependent met-
rics, knowledge of the controller is needed to compute com-
plexity. In control-independent metrics, the actual controller
in place is indirectly accounted for through its effect on the
air traffic organization. In principle, control-dependent metrics
could be employed in the airborne self-separation frame-
work. In practice, however, a control-independent measure of
complexity appears to be better suited for an airborne self-
separation ATM system where the controller has a decentral-
ized time-varying structure, difficult to characterize for the
purpose of control effort evaluation, and involving a human-
in-the-loop component represented by pilots.

The fractal dimension and the intrinsic complexity measures
are control-independent metrics. The input-output approach
provides a control-dependent metric, since complexity is eval-
uated in terms of control effort needed to accommodate an
additional aircraft crossing the considered airspace region. It
then presents the drawback that the algorithm for assessing
complexity is tailored to the adopted conflict solver.

It is by now well-reckoned that the two main factors
jointly affecting complexity are the aircraft density and the
air traffic dynamics. Aircraft density on its own represents a
very coarse measure of complexity, even of the ATC workload.
The evolution of the traffic must also be accounted for when
evaluating complexity.

Approaches to complexity evaluation should have a goal-
oriented output form. Complexity is both a time and space-
dependent feature that can be expressed in an aggregate form
by condensing either the space or the time information, or
both of them. Those approaches providing a spatial complexity
map, such as the input-output and the intrinsic complexity
ones, can support decision making by isolating critical areas
and appear better suited for trajectory management applica-
tions. Scalar-valued, possibly time-dependent, measures pro-
viding a concise information on the complexity encountered
by the aircraft along their trajectory appear better suited for
CD&R-related applications. Scalar aggregate indicator such as
the fractal dimension measuring the geometrical complexity of
a traffic pattern based on the trajectories observed on an infinite
time period can be useful as a synthetic index to compare
different air traffic situations.

The time dependence aspect has been mostly neglected
in the literature and should be better focused, introducing
approaches to air traffic complexity evaluation tailored to
the specific time horizon. Complexity evaluation on a long-
term prediction horizon can help in identifying congested
areas for strategic trajectory management, whereas complexity
evaluation on a mid-term horizon can support distributed
CD&R operations by timely identifying encounter situations
that are critical to solve.

Uncertainty entering aircraft trajectory prediction should
be possibly accounted for in the assessment of complexity.
Complexity is in fact computed based on the future aircraft
trajectories on the considered time-horizon, and, hence, the
reliability of complexity prediction depends on that of the
aircraft trajectories prediction. Despite the extensive studies
on uncertainty in the modeling and analysis of ATM systems
by various researchers (see e.g. [21], [22], [23], [24] and [25])
its effect on air traffic complexity evaluation has not received
adequate attention.

In this paper, we focus on a novel approach to air traf-
fic complexity evaluation proposed in [26], which explicitly
accounts for the uncertainty affecting the future aircraft posi-
tions.

II. PROBABILISTIC APPROACH TO COMPLEXITY
EVALUATION

Complexity is evaluated in terms of proximity in time
and space of the aircraft present in the traffic as determined
by their intent and current state, while taking into account
uncertainty in the aircraft future position. Specifically, air
traffic complexity at a point x in an airspace region S ⊂ R3

and at time t within some look-ahead time horizon T is
evaluated as the probability that a certain buffer zone in the
airspace surrounding x will be “congested” within [t, t + ∆],
with ∆ > 0 (probabilistic occupancy). By defining conges-
tion as the simultaneous occupancy of the buffer zone by
a certain number of aircraft and evaluating this complexity
measure at all possible points in S , a complexity map can be
built. Forming the complexity maps associated with different
consecutive time intervals allows to predict when the aircraft
will enter and leave a particular zone in the airspace, and to
identify regions of the airspace S with a limited inter-aircraft
maneuverability space. This information can be used to detect
critical encounter situations that would be difficult for the
aircraft to solve autonomously and to provide guidance for
trajectory design in conflict resolution operations.

Since the proposed complexity measure is control-
independent, it can be easily applied in the current ground-
based ATM system as well as in the prospective next genera-
tion ATM systems, the only requirement being that the aircraft
state and intent information should be available to reconstruct
the nominal trajectory of each aircraft over the look-ahead
time-horizon T .

Analytic –though approximate– formulas have been derived
in [26] under the assumption that a piecewise linear approx-
imation of the nominal trajectory can be adopted, with the
aircraft flying at constant velocity between consecutive way-
points. The reader is referred to [26] for details on the com-
putational aspects. Here, we focus on the metric description
(see Sections II-A and II-B), and on its possible applications
that are illustrated through numerical examples in Section III.

A. Complexity from a global perspective

Consider N aircraft Ai, i = 1, . . . , N , flying in the 3-
D airspace S ⊂ R3 during the look-ahead time horizon
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T = [0, tf ], with t = 0 representing the current time instant
and tf > 0 the time horizon length. Suppose that each
aircraft is following a nominal trajectory with a velocity profile
uAi : T → R3, starting from the initial position xAi

0 at
time t = 0. The aircraft future position during T is not
known exactly, and we assume that the prediction error can
be modeled through a Gaussian random perturbation whose
variance grows not only linearly with time t but also faster in
the along-track direction (namely the direction of uAi) than in
the cross-track directions (i.e., directions orthogonal to uAi).
Similar models have been proposed in [21], [22] and [25] for
predicting aircraft trajectories over a mid-term look-ahead time
horizon of tens of minutes.
The predicted position xAi(t) ∈ R3 at time t ∈ T of aircraft
Ai is then given by

xAi(t) = xAi
0 +

∫ t

0

uAi(s)ds + QAi(t)ΣAiBAi(t),

where BAi(t) is a standard 3-D Brownian motion start-
ing from the origin whose variance is modulated by the
matrix QAi(t)ΣAi ∈ R3×3. More precisely, ΣAi =
diag(σAi

1 , σAi
2 , σAi

3 ) is a diagonal matrix whose entries σAi
1 ,

σAi
2 , and σAi

3 are the variance growth rates of the pertur-
bation in the along-track direction and the two cross-track
directions and satisfy σAi

1 ≥ σAi
2 = σAi

3 > 0, whereas
QAi(t) =

[
qAi
1 (t) qAi

2 (t) qAi
3 (t)

] ∈ R3×3 is an orthogonal
matrix whose first column qAi

1 (t) is aligned with uAi(t):
qAi
1 (t) = uAi (t)

‖uAi (t)‖ . Different phases of flights can be charac-
terized through different values of the variance growth rates.

For each x ∈ S , let us consider the ellipsoidal region M(x)
centered at x and defined as:

M(x) =
{
x̂ ∈ R3 : (x̂− x)T M(x̂− x) ≤ 1

}
, (1)

where M ∈ R3×3 is a diagonal matrix given by

M = diag
(

1
rh

2
,

1
rh

2
,

1
rv

2

)
,

with rh ≥ rv > 0 defining the size of the ellipsoid in the
horizontal plane and in the vertical direction. If rh = rv , then
the ellipsoid reduces to a sphere of radius rh, and proximity
in the horizontal plane is weighted the same as that in the
vertical direction. Typically, rh > rv since vertical proximity
between aircraft is considered in ATM to be less critical than
horizontal proximity.

The complexity of air traffic within the airspace region S
can be evaluated through the following first order and second
order complexity measures.

The first order complexity c1(x, t) at position x ∈ S within
the time interval [t, t + ∆] ⊆ T is defined as

c1(x, t) := P
(
xAi(t) ∈M(x), for some t ∈ [t, t + ∆]
and i ∈ {1, 2, . . . , N}) (2)

and represents the probability of at least one aircraft entering
the ellipsoid M(x) within the time frame [t, t + ∆].

Note that c1(x, t) = 0 means that none of the existing
aircraft will be inside the ellipsoid M(x) during the time
interval [t, t + ∆]. On the other hand, c1(x, t) = 1 implies
that with certainty there will be at least one aircraft within
M(x) at some time instant belonging to [t, t + ∆].

The second order complexity c2(x, t) at position x ∈ S
within the time interval [t, t + ∆] ⊆ T is defined as

c2(x, t) :=P
(
xAi(t) and xAj (t′) ∈M(x) for some

t, t′ ∈ [t, t + ∆] and i 6= j ∈ {1, 2, . . . , N}) (3)

and represents the probability of at least two aircraft entering
the ellipsoid M(x) within the time frame [t, t + ∆].

If c2(x, t) = 0, then there will be at most a single aircraft
inside the ellipsoid M(x) within the time interval [t, t + ∆].
Hence, at any time t ∈ [t, t + ∆], an aircraft passing through
M(x) will not be sharing M(x) with any of the other N
aircraft. If c2(x, t) = 1, then with probability 1, at least two
aircraft will enter the ellipsoid M(x) during the time interval
[t, t + ∆], though possibly not at exactly the same time.

By letting x vary over S , one can define the first order and
second order complexity maps of the airspace region S within
the time frame [t, t + ∆] as follows:

C1(·, t) : x ∈ S → c1(x, t)
C2(·, t) : x ∈ S → c2(x, t).

Evidently, at any point x ∈ S , the C2 map has a value smaller
than or equal to the C1 map, since the corresponding events
are nested. Higher order complexity measures and maps can
also be defined according to a similar procedure.

Forming the complexity maps for different consecutive time
intervals allows to detect congested areas (i.e., areas where
multi-aircraft encounters with limited inter-aircraft spacing are
likely to occur) in the time-space coordinates, and to identify
surrounding areas where the traffic could be deviated. The
presence of a region with a high value of the second order
complexity implies a high likelihood that two or more aircraft
will get close in time and space, hence having a conflict.
Trajectories should be designed so as to reduce second order
complexity.

More compact global information can be obtained according
to the following procedure.
Let us parameterize the ellipsoidal region M(x) defined in (1)
through a scaling factor ρ > 0 as follows:

Mρ(x) =
{
x̂ ∈ R3 : (x̂− x)T M(x̂− x) ≤ ρ2

}
, (4)

so that, by varying ρ, the ellipsoidal region can be either
squeezed (ρ < 1) or enlarged (ρ > 1). Denote the complexity
measures associated with region Mρ and parameterized by
ρ as cρ

1(x, t) and cρ
2(x, t). Both cρ

1(x, t) and cρ
2(x, t) are

increasing as a function of ρ.
Let

ρmax(t) := sup{ρ ≥ 0 : sup
x∈S

cρ
2(x, t) ≤ pT },
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where pT is some threshold value for the probability that two
aircraft come close one to the other, and define

ρ?
max := sup

t∈T
ρmax(t).

Then, one can take

ξ :=
1

ρ?
max

as a synthetic indicator of complexity of the traffic during the
time horizon T . Note that the extent of the available maneuver-
ability space as measured by ξ will depend on both the local
aircraft density and the traffic dynamic through the aircraft
intent. Since uncertainty in the predicted aircraft position
models possible deviations of the aircraft from their intended
trajectory, ξ can be interpreted as a measure of robustness of
air traffic to perturbations of the nominal situation.

B. Complexity from a single aircraft perspective

According to Definitions 2 and 3, complexity is evaluated
from a global perspective as the probability of occupancy
of a buffer zone surrounding a point by a certain number
of the aircraft Ai, i = 1, 2, . . . , N , that are present in the
airspace region S (at least one aircraft for the first order
complexity and at least two for the second order complexity).
These complexity measures can be easily adapted to provide
a measure of complexity from the perspective of an additional
aircraft that is entering the airspace region S following some
nominal trajectory. The resulting single-aircraft complexity
measure can be interpreted as an indicator of the robustness
of the aircraft nominal trajectory with respect to possible
deviations of the other aircraft from their intended trajectory.

Suppose that an additional aircraft, say aircraft B, is enter-
ing S at time 0 following a nominal trajectory x̄B : T → R3.
The idea is to evaluate the complexity encountered by aircraft
B along its nominal trajectory by making the buffer zone
move along the trajectory of aircraft B and computing the
probability that some of the other aircraft Ai, i = 1, 2, . . . , N ,
will enter such moving zone. This leads to the following
definition of single-aircraft complexity.

The complexity experienced by aircraft B along its nominal
trajectory x̄B : T → S within the time interval [t, t + ∆] is
defined as:

cB(t) := P
(
xAi(t) ∈M(x̄B(t)) for some t ∈ [t, t + ∆]
and i ∈ {1, 2, . . . , N}) (5)

Interestingly, if the time window [t, t + ∆] extends to
the whole look-ahead time horizon T and the buffer zone
reproduces the protection zone surrounding each aircraft, the
single-aircraft complexity measure can as well be interpreted
as the probability of aircraft B getting in conflict with another
aircraft Ai within T . CD&R then becomes an integrable task
in complexity evaluation.

According to a reasoning similar to that in Section II-A,
based on the re-scaled ellipsoidal region (4) and the corre-
sponding single-aircraft complexity function cρ

B : T → [0, 1],

we can introduce function ρmax,B : T → R+ given by

ρmax,B(t) := sup{ρ ≥ 0 : cρ
B(t) ≤ pT },

and define

ρ?
max,B := sup

t∈T
ρmax,B(t).

ρ?
max,B is an index of robustness of the nominal trajectory of

aircraft B. The larger is ρ?
max,B , the more aircraft B is far

from the other aircraft, both in time and in space, with high
(> 1−pT ) probability, and, hence, the larger is the robustness
of its trajectory to possible deviations of the other aircraft from
their intent.

The quantity ξB := 1
ρ?
max,B

can then be taken as synthetic
indicator of the air traffic complexity from the perspective of
aircraft B during the time horizon T . Let ρsafe denote the value
of ρ such that Mρ(x) represents the protection zone surround-
ing an aircraft positioned at x. If ξB > 1

ρsafe
, then, some conflict

can occur with probability ≥ pT and the criticality of this
conflict can be better assessed by computing, for instance, the
earliest conflict time: t?B = min{t ≥ 0 : ρmax,B(t) < ρsafe}.

The introduced single-aircraft complexity measure (5) can
be used by aircraft B to evaluate the maneuverability space
surrounding its nominal trajectory and to eventually redesign
its trajectory so as to improve its robustness. According to a
similar perspective, in the works on trajectory flexibility [27],
[28] it is suggested that, to achieve the aggregate objective
of avoiding excessive ‘air traffic complexity’ in autonomous
aircraft ATM, aircraft should plan their trajectory so as to
preserve maneuvering flexibility to accommodate possible
disturbances stemming, for example, from other traffic.

C. Computational aspects

If the errors affecting the prediction of the position of
different aircraft are independent, each single aircraft contri-
bution to complexity can be computed in isolation and then
incorporated in the overall complexity measure. This means
that the computational effort scales linearly with the number
of aircraft, and that the impact of potential trajectory changes
can be easily evaluated by removing the contribution of the
original trajectory and introducing the one based on the new
trajectory.

Although evaluating complexity does not require to analyze
the interactions of the aircraft, the interaction between aircraft
will still affect the complexity measure: if two aircraft are
converging, complexity will be high in the area they are
converging to; whereas if they are diverging, they will not
cause complexity to be high in any position of the airspace.

III. NUMERICAL EXAMPLES

A. A 2D numerical example

Consider a rectangular airspace region S where 6 aircraft are
following a one-leg nominal trajectory from some starting to
some destination position during the look-ahead time horizon
T = [0, tf ] with tf = 15 minutes (min), while trying to
keep at a minimum safe distance of 3 nautical miles (nmi).
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The configuration of the aircraft nominal trajectories is shown
in Figure 1, where starting positions are marked with ∗ and
destination positions with ¦.

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Fig. 1. Sample paths of 6 aircraft moving from starting position (∗) to
destination position (¦), while trying to keep at a distance 3 nmi.

The trajectories in this figure are obtained by implementing
the decentralized resolution strategy introduced in [25], which
accounts for the uncertainty affecting the aircraft motion
according to a similar model for the aircraft predicted motion.
According to this strategy, resolution maneuvers involve only
heading changes.

In the 2D level-flight case, the ellipsoidal region M(x) in
(1) for complexity computation becomes a circle of radius rx.
In this example we set rx = 1 so that the scaling factor ρ
becomes the actual radius of the re-scaled ellipsoidal region
Mρ(x) in (4) and ρsafe = 3.

The global complexity of the considered air traffic system
obtained with pT = 0.2 is ξ ' 3, which means that aircraft
are only guaranteed to keep at a distance of about 0.33 nmi,
with probability greater than 0.8.

The complexity map Ξ2 : S → [0, 1] plotted in Figure 2 is
obtained by condensing the timing information as follows:

Ξ2(x) =
1
tf

∫ tf

0

cρsafe
2 (x, t)dt. (6)

This map reveals that there are two main regions with some
significant percentage of occupancy (larger than 10%): one in
the upper left-hand-side, and the other close to the center of
the airspace area S .

Ξ2(x) = 0 means that there will be at most a single aircraft
within the ball of radius 3 nmi centered at x during the whole
interval T . Aircraft passing through x such that Ξ2(x) > 0
will be possibly involved in a conflict and the likelihood of
this event grows with Ξ2(x). If Ξ2(x) = 1, in particular, there
will be more than 2 aircraft within the ball of radius 3 nmi
centered at x during the whole interval T .

The earliest conflict time for both the two aircraft in the
upper left-hand-side of the airspace area S is t?B = 2 min.
Indeed, the snapshot of the resolution maneuvers taken at time

Fig. 2. Complexity map Ξ2 : S → [0, 1] obtained for ρsafe = 3 nmi.

t = 2 min shows that this is the earliest time that a significant
deviation action is taken by the decentralized solver and that
it involves the two aircraft in the upper left-hand-side (Figure
3).
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120

Fig. 3. Snapshot of the resolution maneuvers for the 6 aircraft system in
Figure 1 at time t = 2 min.

In this example, the complexity map Ξ2 has been evaluated
at uniformly sampled grid points x ∈ S = [0, 120] × [0, 120]
with a grid size δx1 = δx2 = 1. In the numerical evaluation
of the integral over T involved in (6), T has been uniformly
sampled with δt = 1. The short term look-ahead time horizon
∆ has been set equal to 2 min, and the spectral densities σAi

1 =
0.25 nmi · (min)−1/2 in the along track direction, and σAi

2 =
0.2 nmi · (min)−1/2 in the cross track directions.

To reduce the computational load, one could adopt a vari-
able spatial grid resolution, with a larger grid size far from
the aircraft and a finer one close to the aircraft.

B. 3D numerical examples

In all the examples to follow, the uncertainty affecting the
aircraft future positions is characterized through the spectral
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densities σAi
1 = 0.25 nmi · (min)−1/2 in the along track

direction, and σAi
2 = σAi

3 = 0.2 nmi · (min)−1/2 in the
cross track directions. The parameters rh and rv defining the
ellipsoidal buffer region M(x) in (1) are set equal to rh =
5 nmi and rv = 2000 feet (0.3291 nmi), and the look-ahead
time horizon is T = [0, 10] min.

a) Evaluating the airspace occupancy: Consider a 3-
D airspace region with six aircraft. Each aircraft is moving
at constant velocity along a straight line during the time
interval T . The nominal trajectories of the aircraft are shown
in Figure 4. Figure 5(a) shows the first order complexity map

Fig. 4. Initial positions and nominal trajectories of the aircraft. ’*’ denote
starting points, and ’o’ denote the nominal position of the aircraft at time t=
10 min.

C1(·, t) for five different consecutive time frames [t, t+∆] of
length ∆ = 2 min, covering the whole time horizon T . For
each time frame, the complexity map is evaluated at uniformly
sampled points in the horizontal plane XY with an uniform
gridding of size δx = δy = 0.2 nmi. Similarly, the complexity
maps C2(·, t), t = 0, 2, 4, 6, 8, are plotted in Figure 5(b).

Figure 5(a) shows that the first order complexity is high
initially in those zones that the aircraft are most likely to
occupy in the XY plane. However, it can be seen from the
second order complexity map that no two aircraft come close
to each other in the first two time frames. During the time
frame [4, 6], there is a zone of high C1 and C2 complexity
in the airspace. From the C2 map, we can deduce that there
will be more than one aircraft during this interval in that zone.
This is to be expected considering that the nominal trajectories
take the aircraft close to each other around this time. Also,
the drastic decrease in the C1 complexity map in successive
subintervals indicates that the aircraft then move away from
each other. Additional traffic entering the airspace should then
better avoid crossing the XY plane in the time frame [2, 4].

b) Evaluation of the maneuverability space: Suppose
that an additional aircraft B is introduced at time t = 0 at the
point [8, 8,−2]T nmi in the airspace where the six aircraft are
flying. Aircraft B is following a straight line trajectory at the
constant velocity uB = [2, 2, 2]T nmi/min. Due to the presence
of the six aircraft, aircraft B is not free to change its heading

(a) C1 complexity maps

(b) C2 complexity maps

Fig. 5. Complexity maps over the XY plane corresponding to different time
frames [ts, tf ] of length 2 min in the time horizon [0, 10] min.

Fig. 6. Complexity experienced by aircraft B entering an airspace region
with other six aircraft as a function of its heading at a point along its straight
line trajectory.

arbitrarily during the flight. In Figure 6 we represent the
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complexity cB(t) defined in (5) as a function of the heading
of aircraft B over a time frame of length ∆ = 1 minute at a
sampled-point (t = 3) along the nominal trajectory of aircraft
B. It can be observed that aircraft B faces a decrease in the
amount of low-complexity prospective headings at some of
these points, indicating that the airspace surrounding them is
congested. This information might be used by aircraft B to
find a minimal-complexity trajectory through the airspace.

c) Trajectory design: Suppose that an aircraft B has
to enter the airspace region S at time 0 and reach some
destination position at time tf . The intended trajectory of the
aircraft is a straight line traveled at constant velocity between
its entry point and destination. However, this trajectory is not
guaranteed to be of low-complexity due to the presence of
other aircraft. Aircraft B can then choose a fixed number m
of velocity changes at specified points in time 0 < t1 < t2 <
. . . < tm < tf to reduce the complexity along its trajectory.

Note that the way points X1, X2, . . . , Xm at which aircraft
B changes its velocity completely specify its nominal multi-
legged trajectory. Since the flight time between successive way
points is given, the velocity of aircraft B within each interval
can be determined from the way points X1, X2, . . . , Xm and
the starting and destination positions.

We seek to find an optimal trajectory in the sense that both
the deviation from the intended trajectory and the complexity
cB(0) experienced by aircraft B within the flight time [0, tf ]
(∆ = tf ) are minimized. We take the sum of the distances of
the way points X1, X2, . . . , Xm from the intended trajectory
as measure of the deviation d.

The complexity experienced by aircraft B along a multi-
legged trajectory is not easy to compute since aircraft B does
not have a constant velocity through out its flight, but only
keeps its velocity constant during each interval [ti, ti+1], i =
0, 1, . . . , m. However, we can over-approximate it by the sum
of the complexities evaluated along the time intervals [ti, ti+1]
where aircraft B is flying at constant velocity vi from Xi to
Xi+1.

The problem of finding a suitable trajectory is then formu-
lated as that of minimizing the cost:

J := d + λĉB(0), (7)

which is a weighted sum of the deviation measure d and
the over-approximation of the complexity measure ĉB(0). A
higher value of the weighting coefficient λ > 0 attributes a
greater priority to the low-complexity requirement, and results
in a less conflict-prone trajectory for appropriately chosen size
of the buffer zone.

In Figure 7, an encounter situation is shown, where some
aircraft B enters an airspace region at time 0 and aims at
reaching a destination position at time tf = 10, while keeping
at some constant altitude. Four aircraft are already present
in that region. Assume that aircraft B follows a level flight
trajectory with one possible velocity change (m = 1) at t1 = 5
out of a total flight time tf = 10.

Figure 7 shows the optimal trajectory of aircraft B obtained
by minimizing the cost function (7) with λ = 1500. The

Fig. 7. Originally intended trajectory (solid line) and optimal trajectory
(dashed line) of aircraft B flying from the starting position on the left to the
destination position on the right (λ = 1500). The color map in the background
represents the complexity along aircraft B trajectory as a function of the
intermediate way point position.

minimization was done using the MATLAB function fmincon
and with the intended straight trajectory as the initial guess
for the solution. The color map in Figure 7 represents the
sum of the complexity measures within the time intervals [0, 5]
and [5, 10] evaluated for different choices of the intermediate
way point. The original intended trajectory is also plotted for
comparison. It can be observed that the sum of the complexity
measures along this trajectory is greater than that of the
optimal one. A larger value of λ places more emphasis on the
low-complexity requirement and thus leads to more aggressive
maneuvering.

IV. CONCLUSIONS

New generation ATM systems will have a decentralized and
distributed control structure, with separation and management
tasks shared between the ground and the flight-deck. This
poses new and formidable challenges in the ATM system
design. This work has addressed in particular the problem
of assessing air traffic complexity in an autonomous aircraft
context. Perspective applications have been described, such as
onboard trajectory management and CD&R. The correspond-
ing requirements on complexity metrics have been discussed.

A method to evaluate air traffic complexity on a mid-term
horizon from a global perspective and from the perspective
of a single aircraft has been described. A key feature of the
method is that it accounts for the uncertainty in the prediction
of the aircraft future positions. Possible applications have
been illustrated through some simple numerical examples,
which include using complexity maps and measures for de-
tecting congested airspace areas and critical situations from
the CD&R perspective, and the design of a trajectory for an
additional aircraft crossing some airspace region.
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